
J. Fluid Mech. (2005), vol. 526, pp. 349–359. c© 2005 Cambridge University Press

DOI: 10.1017/S0022112004002848 Printed in the United Kingdom

349

Large-scale energy spectra in surface
quasi-geostrophic turbulence

By CHUONG V. TRAN† AND JOHN C. BOWMAN
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta,

Canada, T6G 2G1

(Received 12 May 2004 and in revised form 5 November 2004)

The large-scale energy spectrum in two-dimensional turbulence governed by the
surface quasi-geostrophic (SQG) equation

∂t (−�)1/2ψ + J
(
ψ, (−�)1/2ψ

)
= µ�ψ + f

is studied. The nonlinear transfer of this system conserves the two quadratic quantities
Ψ1 = 〈[(−�)1/4ψ]2〉/2 and Ψ2 = 〈[(−�)1/2ψ]2〉/2 (kinetic energy), where 〈·〉 denotes a
spatial average. The energy density Ψ2 is bounded and its spectrum Ψ2(k) is shallower
than k−1 in the inverse-transfer range. For bounded turbulence, Ψ2(k) in the low-
wavenumber region can be bounded by Ck where C is a constant independent of k

but dependent on the domain size. Results from numerical simulations confirming
the theoretical predictions are presented.

1. Introduction
The dynamics of a three-dimensional stratified rapidly rotating fluid is characterized

by the geostrophic balance between the Coriolis force and pressure gradient. The
nonlinear dynamics governed by the first-order departure from this linear balance
is known as quasi-geostrophic dynamics and is inherently three-dimensional. The
theory of quasi-geostrophy is interesting and the research performed on this subject
constitutes a rich literature (see, for example, Charney 1948, 1971; Rhines 1979;
Pedlosky 1987). This theory renders a variety of two-dimensional models that are
appealing for their relative simplicity and yet sufficiently sophisticated to capture
the underlying dynamics of geophysical fluids. One such model, the so-called surface
quasi-geostrophic (SQG) equation, is the subject of the present study.

Quasi-geostrophic flows can be described in terms of the geostrophic stream
function ψ(x, t). The vertical dimension z is usually taken to be semi-infinite and the
horizontal extent may be either bounded or unbounded. Normally, decay conditions
are imposed as z → ∞. At the flat surface boundary, z = 0, the vertical gradient of
ψ(x, t) matches the temperature field T (x, t), i.e. T (x, t)|z=0 = ∂zψ(x, t)|z=0. For flows
with zero potential vorticity, this surface temperature field can be identified with
(−�)1/2ψ , where � is the (horizontal) two-dimensional Laplacian. Here, the operator

(−�)1/2 is defined by (−�)1/2ψ̂(k) = kψ̂(k), where k = |k| is the wavenumber and ψ̂(k)
is the Fourier transform of ψ(x). The conservation equation governing the advection
of the temperature (−�)1/2ψ by the surface flow is (Blumen 1978; Pedlosky 1987;
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Pierrehumbert, Held & Swanson 1994; Held et al. 1995)

∂t (−�)1/2ψ + J
(
ψ, (−�)1/2ψ

)
= 0, (1.1)

where J (ϕ, φ) = ∂xϕ∂yφ − ∂yϕ∂xφ. This equation is known as the SQG equation.
In this paper a forced-dissipative version of (1.1) is studied. A dissipative term of

the form µ�ψ , where µ > 0, which results from Ekman pumping at the surface, is
considered (Constantin 2002; Tran 2004). Since (−�)1/2ψ is the advected quantity,
this physical dissipation mechanism corresponds to the (hypoviscous) dissipation
operator µ(−�)1/2. The dissipation coefficient µ has the dimension of velocity and
is not vanishingly small in the atmospheric context (Constantin 2002). The system is
assumed to be driven by a forcing f , for which the spectral support is confined to
wavenumbers k � s > 0 (in bounded turbulence, wavenumber zero is replaced by the
minimum wavenumber). Thus, the forced-dissipative SQG equation can be written as

∂t (−�)1/2ψ + J
(
ψ, (−�)1/2ψ

)
= µ�ψ + f. (1.2)

It is customary in the classical theory of turbulence to consider a doubly periodic
domain of size L; the unbounded case is obtained via the limit L → ∞.

The Jacobian operator J (·, ·) admits the identities

〈χJ (ϕ, φ)〉 = −〈ϕJ (χ, φ)〉 = −〈φJ (ϕ, χ)〉, (1.3)

where 〈·〉 denotes the spatial average. As a consequence, the nonlinear term in (1.2)
obeys the conservation laws〈

ψJ
(
ψ, (−�)1/2ψ

)〉
=

〈
(−�)1/2ψJ

(
ψ, (−�)1/2ψ

)〉
= 0. (1.4)

It follows that the two quadratic quantities

Ψθ =
〈∣∣(−�)θ/4ψ

∣∣2〉/2 =

∫
Ψθ (k) dk,

where θ = 1, 2, are conserved by nonlinear transfer. Here, Ψθ (k) is defined by
Ψθ (k) = kθΨ (k), where Ψ (k) is the power density of ψ associated with wavenumber k

and θ is a real number. Note that Ψ2(k) is the kinetic energy spectrum and Ψ2 is the
kinetic energy density.

The simultaneous conservation of two quadratic quantities by advective
nonlinearities is a common feature in incompressible fluid systems in two dimensions.
Some familiar systems in this category are the Charney–Hasegawa–Mima equation
(Hasegawa & Mima 1978; Hasegawa, Maclennan & Kodama 1979) and the class of
α turbulence equations (Pierrehumbert et al. 1994), which includes both the Navier–
Stokes and the SQG equations. These conservation laws, together with the scale-
selectivity of the dissipation and unboundedness of the domain, are the building
block of the classical dual-cascade theory (Fjørtoft 1953; Kraichnan 1967, 1971;
Leith 1968; Batchelor 1969). This theory, when applied to the present case, implies
that Ψ1 cascades to low wavenumbers (inverse cascade) and Ψ2 cascades to high
wavenumbers (direct cascade). For some recent discussion on the possibility of a
dual cascade in various two-dimensional systems, including the Navier–Stokes and
SQG equations, see Tran & Shepherd (2002), Tran & Bowman (2003, 2004) and Tran
(2004). The inverse cascade toward wavenumber k = 0 would eventually evade viscous
dissipation altogether because the spectral dissipation rate vanishes as k → 0. Hence,
according to the classical picture, Ψ1 necessarily grows unbounded, by a steady growth
rate dΨ1/dt > 0, as t → ∞. Strictly speaking, one may have to address the possibility
of a dissipated inverse cascade, i.e. one for which the dissipation of Ψ1 occurs at scales
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much larger than the forcing scale and for which dΨ1/dt has a zero time mean. Such
a cascade is not a plausible scenario (and is not the traditional undissipated inverse
cascade) in fluid systems, dissipated by a single viscous operator, where the viscous
dissipation rate diminishes toward the large scales. A discussion of this issue can be
found in Tran (2004).

In this study, upper bounds are derived for the time averages of the kinetic energy
density Ψ2 and of the large-scale spectrum Ψ2(k). These bounds are derived from the
governing equation, involving simple but rigorous estimates. The bound on Ψ2 is valid
in both unbounded and bounded cases, and a straightforward consequence of this
bound is a bound on the energy spectrum, which also applies to both unbounded and
bounded turbulence. Another bound on the large-scale energy spectrum is derived by
estimating the nonlinear triple-product term representing the inverse transfer of Ψ1.
This result applies to bounded turbulence since upper bounds for the triple-product
term are inherently domain-size dependent. The difficulties of extending this result to
the unbounded case are discussed. Some numerical results confirming the theoretical
predictions are presented.

2. Bounded dynamical quantities
A notable feature of unbounded incompressible fluid turbulence in two dimensions

is the appearance of infinite quadratic quantities (per unit area): namely, the kinetic
energy density Ψ2 for Navier–Stokes turbulence and Ψ1 for the SQG case. According
to the classical theory (applied to the SQG case), a (steady) injection of Ψ1, applied
around some finite wavenumber s, cascades to ever-larger scales, leading to an
unbounded growth of Ψ1 (this is presumably the case for the general quadratic
invariant Ψα in the so-called α turbulence; cf. Tran 2004). In other words, if the
classical inverse cascade is realizable, unbounded incompressible fluid turbulence in
two dimensions constitutes an ill-posed problem, in the sense that a key quadratic
invariant becomes infinite. Of course, there still exist finite quadratic quantities, in
particular the dissipation agent for each quadratic invariant. This section is concerned
with these quantities.

On multiplying (1.2) by ψ and (−�)1/2ψ and taking the spatial average of the
resulting equations, noting from the conservation laws that the nonlinear terms
identically vanish, one obtains evolution equations for Ψ1 and Ψ2,

d

dt
Ψ1 = −2µΨ2 + 〈f ψ〉, (2.1)

d

dt
Ψ2 = −2µΨ3 +

〈
f (−�)1/2ψ

〉
. (2.2)

Using the Cauchy–Schwarz and geometric–arithmetic mean inequalities, one obtains
upper bounds on the injection terms in (2.1) and (2.2):

〈f ψ〉 �
〈∣∣(−�)1/2ψ

∣∣2〉1/2〈∣∣(−�)−1/2f
∣∣2〉1/2

� µΨ2 + µ−1F−2,〈
f (−�)1/2ψ

〉
�

〈∣∣(−�)3/4ψ
∣∣2〉1/2〈∣∣(−�)−1/4f

∣∣2〉1/2
� µΨ3 + µ−1F−1,

}
(2.3)

where the ‘integration by parts’ rule 〈(−�)θφχ〉 = 〈(−�)θ
′
φ(−�)θ

′′
χ〉, for θ = θ ′ + θ ′′,

has been used and Fθ = 〈|(−�)θ/4f |2〉/2. Substituting (2.3) in (2.1) and (2.2) yields

d

dt
Ψ1 � −µΨ2 + µ−1F−2, (2.4)

d

dt
Ψ2 � −µΨ3 + µ−1F−1. (2.5)
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To avoid unnecessary complications, zero initial conditions are assumed, so that
for T > 0 the time means 〈dΨ1/dt〉t = Ψ1(T )/T and 〈dΨ2/dt〉t are non-negative. One
can then deduce upper bounds on the time means 〈Ψ2〉t and 〈Ψ3〉t , which are valid
regardless of whether or not Ψ1 remains finite in the limit t → ∞:

〈Ψ2〉t � µ−2〈F−2〉t , (2.6)

〈Ψ3〉t � µ−2〈F−1〉t . (2.7)

For θ ∈ (2, 3), 〈Ψθ〉t is also bounded. Indeed, from the Hölder inequalities Ψθ �
Ψ 3−θ

2 Ψ θ−2
3 (cf. Tran 2004) and 〈Ψ 3−θ

2 Ψ θ−2
3 〉t � 〈Ψ2〉3−θ

t 〈Ψ3〉θ−2
t , one can deduce from

(2.6) and (2.7) that

〈Ψθ〉t � 〈Ψ2〉3−θ
t 〈Ψ3〉θ−2

t � µ−2〈F−2〉3−θ
t 〈F−1〉θ−2

t . (2.8)

This result implies that for θ ∈ (2, 3), 〈Ψθ〉t is bounded, provided that both 〈F−1〉t and
〈F−2〉t are bounded. This condition is assured if s > 0 and F0 is bounded, a condition
normally required of the forcing, because F−2 � F−1/s � F0/s

2. One may even consider
a class of forcing for which F0 = ∞ and F−2 � F−1/s < ∞.

Upper bounds of the above type on dynamical quantities are rather trivial for
bounded turbulence. However, they are important in the unbounded case, for two
reasons. First, the scale-selective viscous dissipation allows for the possibility of
unbounded growth of certain quadratic quantities toward the low wavenumbers.
Hence, rigorous bounds on dynamical quantities are not as abundant as in the
bounded case. Second, analytic studies of the nonlinear triple-product transfer
function are difficult in unbounded domains. In the absence of pointwise estimates
for the spectrum, these bounds are particularly useful for qualitative estimates of the
large-scale distribution of energy. For example, Tran (2004) uses inequality (2.6) to
argue that the energy spectrum Ψ2(k) should be shallower than k−1, as k → 0.

3. Large-scale energy spectrum
In this section, it is shown that the physical laws of SQG dynamics admit only

large-scale energy spectra shallower than k−1. This result is due in part to the fact
that the simultaneous conservation of Ψ1 and Ψ2 allows virtually no kinetic energy to
be transferred toward the low wavenumbers, so that only large-scale kinetic energy
spectra shallower than k−1 are possible.

3.1. Shell-averaged energy spectrum

For a given wavenumber r , let us denote by S = S(r) the wavenumber shell between
k = r/2 and k = 3r/2, i.e. S(r) = {k : r/2 � k � 3r/2}. The shell-averaged energy spec-
trum Ψ 2(r) over S(r) is defined by

Ψ 2(r) =
1

r

∫ 3r/2

r/2

Ψ2(k) dk. (3.1)

In the present case of a doubly periodic domain of size L, the Fourier representation

of the stream function is ψ(x) =
∑

k exp{ik · x}ψ̂(k), where k = 2πL−1(kx, ky) with kx

and ky being integers not simultaneously zero. Let ψ(S) denote the component of ψ

spectrally supported by S, i.e. ψ(S) =
∑

k∈S exp{ik · x}ψ̂(k). One has

sup
x

|∇ψ(S)| �
∑
k∈S

k|ψ̂(k)| �

(∑
k∈S

1
∑
k∈S

k2|ψ̂(k)|2
)1/2

� cLrΨ
1/2
2 (S), (3.2)
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where the Cauchy–Schwarz inequality is used, the sum
∑

k∈S 1 = (cLr)2 is the number
of wavevectors in S, c is an absolute constant of order unity and Ψ2(S) is the
contribution to the kinetic energy from S.

3.2. Upper bounds for the energy spectrum

A simple upper bound for Ψ 2(k), which is applicable to both the unbounded and
bounded cases, can be derived from (2.6). It follows from (2.6) and (3.1) that

〈Ψ 2(k)〉t =
1

k

∫ 3k/2

k/2

〈Ψ2(κ)〉t dκ � µ−2〈F−2〉t k
−1. (3.3)

This bound is supposed to apply to k in the inverse-transfer region. For k in the
direct-transfer region, (2.7) yields

〈Ψ 2(k)〉t =
1

k

∫ 3k/2

k/2

〈Ψ2(κ)〉t dκ �
2

k2

∫ 3k/2

k/2

〈Ψ3(κ)〉t dκ � 2µ−2〈F−1〉t k
−2. (3.4)

The upper bound (3.3) suggests that dimensional analysis arguments, which predict
a large-scale k−1 energy spectrum, are not well justified. If a persistent inverse cascade
of Ψ1 exists (dΨ1/dt > 0), then the energy Ψ2 should acquire a value such that
Ψ2 <µ−2F−2. In the unbounded case, the large-scale energy spectrum then needs to
be strictly shallower than k−1, to ensure that the dissipation of Ψ1 does not increase
without bound as the inverse cascade proceeds toward k = 0. On the other hand,
if no inverse cascade of Ψ1 exists, then a k−1 energy spectrum with limited extent
is possible. If viscous dissipation mechanisms with degrees higher than that of the
natural dissipation are considered, then the upper bounds derived above are not valid.
Nevertheless, diminishing energy transfer towards the lowest wavenumbers appears to
be consistent only with spectra shallower than k−1 (for low-wavenumber convergence
of the energy integral). The numerical results reported in § 4 are well suited to this
expectation.

An upper bound for the large-scale energy spectrum, based on the nonlinear
transfer term, can be derived for the bounded case. This analysis employs elementary
but rigorous estimates of the triple-product term. For 3k/2 < s, the evolution of
Ψ1(S(k)) is governed by

d

dt
Ψ1(S) = −

〈
ψ(S)J

(
ψ, (−�)1/2ψ

)〉
− 2µΨ2(S)

=
〈
(−�)1/2ψJ (ψ, ψ(S))

〉
− 2µΨ2(S)

�
〈∣∣(−�)1/2ψ

∣∣|∇ψ ||∇ψ(S)|
〉

− 2µΨ2(S)

� sup
x

|∇ψ(S)|
〈∣∣(−�)1/2ψ

∣∣|∇ψ |
〉

− 2µΨ2(S)

� 2cLkΨ
1/2
2 (S)Ψ2 − 2µΨ2(S)

� c2µ−1L2k2Ψ 2
2 − µΨ2(S)

= c2µ−1L2k2Ψ 2
2 − µkΨ 2(k), (3.5)

where the second equality is a consequence of (1.3) and the second last and
last inequalities follow from (3.2) and the geometric–arithmetic mean inequality,
respectively. It follows that

〈Ψ 2(k)〉t � c2µ−2L2k
〈
Ψ 2

2

〉
t
. (3.6)
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A notable feature of (3.6) is its dependence on the fluid domain size. The presence of
L in this upper bound is natural: the upper bound supx |∇ψ(S)|, which is associated
with the fluid velocity at scales ≈ k−1, is inherently domain-size dependent. There
are no known analytic estimates that allow one to derive an upper bound on the
nonlinear transfer function 〈ψ(S)J (ψ, (−�)1/2ψ)〉 in terms of ‘intensive quantities’
only. This difficulty arises not only in the present estimate but also in other analytic
estimates of the transfer function. In other words, the nonlinear triple-product term
is intrinsically domain-size dependent. This problem considerably limits our ability to
assess the nonlinear transfer in unbounded systems. Finally, it is worth mentioning that
although the upper bound (3.6) has a linear dependence on k, it may be more excessive
than the bound µ−2〈F−2〉t k

−1 derived earlier (even for very low wavenumbers). The
reason is that L2k � k−1 and the prefactor c2〈Ψ 2

2 〉t may not be as optimal as 〈F−2〉t .

4. Numerical results
This section reports results from numerical simulations that illustrate the realization

of large-scale spectra shallower than k−1. Equation (1.2) is simulated in a doubly

periodic square of side 2π, where the forcing f̂ (k) is non-zero only for those
wavevectors k having magnitudes lying in the interval K =[59, 61]:

f̂ (k) =
ε

N

ψ̂(k)

2Ψ1(k)
. (4.1)

Here ε = 1 is the constant energy injection rate and N is the number of distinct
wavenumbers in K . The (constant) injection rate of Ψ1 is ε/s ≈ 1/60, where 1/s ≈ 1/60
is the mean of k−1 over K . This type of forcing was used by Shepherd (1987), Tran
(2004) and Tran & Bowman (2004) in numerical simulations of a large-scale zonal
jet on the so-called beta-plane and of Navier–Stokes turbulence. The attractive
aspect of (4.1), as noted in Shepherd (1987), is that it is steady. Dealiased 6832 and
13652 pseudospectral simulations (10242 and 20482 total modes) were performed.
Three dissipative forms were considered: 2.5 × 10−2�ψ , −4 × 10−4(−�)3/2ψ , and
−6 × 10−6�2ψ + µ�ψ for several values of µ. The first case represents the natural
dissipation of the SQG dynamics due to Ekman pumping, as mentioned earlier. The
second case represents thermal (molecular) diffusion since (−�)1/2ψ is equivalent to
the fluid temperature. The third case – the mixed hyperviscous/Ekman dissipation
form – is considered in order to demonstrate that even slight amounts of Ekman
damping will inhibit the formation of an inverse cascade. Unlike Smith et al. (2002), the
case of mechanical friction (∝ (−�)1/2ψ) was not considered. The higher resolution
was used for the first (natural dissipation) case and the lower resolution was used
for the second and third cases. All simulations were initialized with the spectrum
Ψ2(k) = 10−5πk/(602 + k2).

Figure 1 shows the time-averaged steady-state kinetic energy spectrum for the case
of the natural dissipation term 2.5×10−2�ψ . The dissipation agents of Ψ1 and Ψ2 are,
respectively, Ψ2 (energy) and Ψ3. The value of the energy, 0.3333, implies that the dis-
sipation of Ψ1, averaged in the same period, is 0.01666. This amounts to virtually all of
the injection rate 1/60. Hence, there exists no inverse cascade of Ψ1 to the large scales
and both Ψ1 and Ψ2 are steady. The small-scale energy spectrum scales as k−3.5, so
that the spectrum Ψ3(k) scales as k−2.5. This scaling means that the energy dissipation
occurs mainly around the forcing region and is consistent with the bound (3.4).

Unlike Navier–Stokes turbulence, for which the inverse energy cascade is robust
and can be simulated at relatively low resolution, it was noticed that no choice for
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Figure 1. The time-averaged steady-state energy spectrum Ψ2(k) vs. k for the dissipation
term 2.5 × 10−2�ψ .
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Figure 2. The quasi-steady energy spectrum Ψ2(k) vs. k averaged between t = 37.3
and t = 38.7 for the dissipation term −4 × 10−4(−�)3/2ψ .

the value of µ at the present resolution could be used to simulate an inverse cascade
of Ψ1. It is not known whether an inverse cascade of Ψ1 is realizable at higher
resolutions, using a smaller value of µ. Nevertheless, this observation suggests that
Ψ1 is ‘reluctant’ to cascade to the large scales, compared with the more robust inverse
energy cascade in Navier–Stokes turbulence.

Figure 2 shows the kinetic energy spectrum averaged between t = 37.3 and t = 38.7,
for a lower viscous degree. The dissipation agents of Ψ1 and Ψ2 are, respectively,
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Figure 3. The quasi-steady energy spectrum Ψ2(k) vs. k averaged between t = 15.67 and
t = 16.52 for the dissipation term −6 × 10−6�2ψ + µ�ψ , using three different values of µ.

Ψ3 and Ψ4 (enstrophy). The value of Ψ3 is 20, implying that the dissipation of Ψ1 is
1.6×10−2. This amounts to about 96% of the injection rate 1/60. The inverse cascade
then carries only a few percent of the injection of Ψ1 to the large scales.

The small-scale energy spectrum scales as k−4.5, so that the enstrophy spectrum
Ψ4(k) scales as k−2.5. Most of the energy dissipation occurs around the forcing region,
consistent with a ‘weak’ inverse cascade (one that does not carry virtually all of
the injection of Ψ1 toward k = 0; cf. Tran and Bowman 2004; Tran 2004). No direct
cascade is possible for bounded turbulence in equilibrium or for unbounded turbulence
in the presence of a weak inverse cascade.

Similarly, figure 3 shows the kinetic energy spectrum averaged between t = 15.7
and t = 16.5 for the mixed dissipation −6 × 10−6�2ψ + µ�ψ , using three different
values of µ. When µ = 0, the dissipation agents of Ψ1 and Ψ2 are, respectively, Ψ4

(enstrophy) and Ψ5. The value of the enstrophy, 1208, implies that the dissipation of
Ψ1 is 1.45 × 10−2, amounting to about 87% of the injection rate 1/60. The small-scale
energy spectrum scales as k−5, so that Ψ5(k) scales as k−2. Again, this scaling means
that most of the energy dissipation occurs around the forcing region and that the
inverse cascade is weak. We note that as µ is increased, the inverse cascade becomes
increasingly weak. We emphasize this behaviour by plotting in figure 4 the inverse
cascade strength r =1 − 2s(µΨ2 + 6 × 10−6Ψ4)/ε for six different values of µ.

Unlike Navier–Stokes turbulence, for which the enstrophy acquires its near-
equilibrium value once a discernible inverse-transfer range has formed, the energy in
SQG turbulence can remain significantly less than its equilibrium value until a very
wide inverse-transfer range has developed. For example, for a one-decade Navier–
Stokes inverse-transfer range (achievable in numerical simulations), the enstrophy
acquires 95% of its projected equilibrium value (calculated with a k−5/3 energy
spectrum extrapolated to k =0). On the other hand, for a one-decade SQG inverse-
transfer range, the energy acquires only 66% of its projected equilibrium value
(calculated with a k−0.7 energy spectrum extrapolated to k = 0, as realized in the
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Figure 4. The decay of the inverse cascade strength r for the dissipation
term −6 × 10−6�2ψ + µ�ψ as µ is increased.

present simulations; cf. the µ = 0 case of figure 3). This means that one needs
a considerably wider inverse-transfer region for SQG turbulence than for Navier–
Stokes turbulence, in order to approach a quasi-steady state. This problem is in
addition to the resolution limitations at the small scales for both cases.

Due to the steep spectrum in the inverse-transfer region, the energy in the µ =0
case of figure 3 has not acquired a value close to its equilibrium value. This means
that the system is still well within the transient phase, However, the dissipation of Ψ1

(proportional to the enstrophy) cannot grow considerably (without significant change
to the existing spectrum), because of the high degree of viscosity, which makes the
dissipation of Ψ1 relatively insensitive to growth of the large-scale energy.

5. Conclusion and discussion
In this paper, the kinetic energy density of SQG turbulence and its large-scale

spectrum have been studied. For the unbounded case, upper bounds are derived for
the time means of the kinetic energy density and of the large-scale energy spectrum,
averaged over a narrow window of wavenumbers. Another result is an upper bound
on the the time mean of the large-scale energy spectrum, which is derived for the
bounded case. Numerical results confirming the predicted slopes of the large-scale
energy spectrum are presented and discussed.

An important feature in SQG turbulence that gives rise to the rigorous upper bound
on the time mean of the kinetic energy density in the unbounded case is that the
kinetic energy is the dissipation agent of the inverse-cascading candidate Ψ1. This is
due to the hypoviscous nature of the dissipation operator (−�)1/2, a natural physical
dissipation mechanism of SQG dynamics (Ohkitani & Yamada 1997; Constantin
2002; Tran 2004). If (−�)1/2 is replaced by an operator of the form (−�)η, where
η > 1/2, then the simple analysis of § 2 fails to show that the time mean of the energy
density 〈Ψ2〉t is bounded, although it may remain so for low degrees of viscosity η.
The reason is that the amount of energy being transferred to wavenumbers lower
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than a given wavenumber k decreases at least as rapidly as k, so that the spectral
dissipation rate ∝ k2η, a consequence of the dissipation operator (−�)η, may be
sufficiently strong to balance the diminishing inverse energy transfer and prevent the
energy from growing unbounded.

Numerical simulations of SQG turbulence were performed, using the natural
dissipation operator (−�)1/2 and two viscous operators � and (−�)3/2. The results
show large-scale energy spectra shallower than k−1, consistent with the theoretical
prediction.

There have been attempts to explain, within the context of SQG turbulence
(Constantin 2002; Tung & Orlando 2003), the kinetic energy spectra observed in
the laboratory experiment of Baroud et al. (2002) and in the atmosphere. In the
former case, the turbulence in a rotating tank is driven at a sufficiently small scale
to allow a wide inverse-transferring range. A k−2 spectrum extending over nearly
two wavenumber decades lower than the forcing wavenumber is observed. In the
latter case, a k−5/3 spectrum is observed in the mesoscales (see Frisch 1995 and
Tung & Orlando 2003 and references therein), which correspond to wavenumbers
higher (lower) than the forcing wavenumber if the energy released from baroclinic
instability (thunderstorms) is considered to be the driving force. The −2 power-law
scaling observed in Baroud (2002) for the wavenumber range lower than the forcing
wavenumber is much steeper than the permissible scalings derived in this work. The
−5/3 slope in the atmosphere is either steeper (if considered to be in the wavenumber
range lower than the forcing wavenumber) or shallower (if considered to be in the
wavenumber range higher than the forcing wavenumber) than the permissible slopes.
According to the present analysis, these data cannot be attributed to SQG turbulence.
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